ASH-VI/MTMH/DSE-4/23

B.A./B.Sc. 6th Semester (Honours) Examination, 2023 (CBCS)

Subject : Mathematics Course : BMH6DSE42 (Differential Geometry)

Time: 3 Hours

Full Marks: 60

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Notation and symbols have their usual meaning.

 $2 \times 10 = 20$

- 1. Answer any ten questions:
 - (a) Define a space curve. Give an example of it.
 - (b) When is a curve in \mathbb{R}^n said to be unit speed? Give an example of a unit speed curve.
 - (c) Define arc length of a plane curve. Find the arc length of the curve $\gamma(t) = (e^t \cos t, e^t \sin t)$ at $\gamma(0) = (1, 0)$.
 - (d) Deduce the curvature of the curve $\gamma(t) = (\cos^3 t, \sin^3 t)$.
 - (e) Define signed curvature of a plane curve.
 - (f) Define a surface immersed in \mathbb{E}^3 .
 - (g) Show that the surface of a sphere $S^2 = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ is a smooth surface.
 - (h) Deduce the first fundamental form of a plane.
 - (i) When is a curve on a surface said to be geodesic? Prove that any geodesic has constant speed.
 - (j) State second fundamental form of a surface $\sigma(u, v)$.
 - (k) When is a point on a surface said to be umbilic?
 - (1) State Meusnier's theorem.
 - (m) Give an example of a surface of positive curvature.
 - (n) Define mean curvature of a surface.
 - (o) Give an example of a surface whose Gaussian curvature and mean curvature are different.
 - 2. Answer any four questions:
 - (a) If γ is a unit speed curve of \mathbb{R}^3 with constant curvature and zero torsion, then prove that γ is a part of a circle.
 - (b) Deduce the torsion of a curve $\gamma(t) = \left(\frac{4}{5}\cos t, 1 \sin t, -\frac{3}{5}\cos t\right)$.
 - (c) Deduce the first fundamental form of a surface $\sigma(u, v) = (u, v, u^2 + v^2)$.
 - (d) Prove that any tangent developable surface is isometric to a plane.

(4)

5×4=20

ASH-VI/MTMH/DSE-4/23

 $10 \times 2 = 20$

2+8

- (5)
- (e) Prove that a curve on a surface is a geodesic if and only if its geodesic curvature is zero everywhere.
- (f) Prove that the Gaussian curvature of a ruled surface is negative or zero.
- 3. Answer any two questions:
 - (a) Let $\gamma(t)$ be a unit speed curve with k(t) > 0 and $\tau(t) \neq 0$ for all t. Show that γ lies on the surface of a sphere of radius r if and only if

$$\frac{\tau}{k} = \frac{d}{ds} \left(\frac{k}{\tau k^2} \right),$$

where $r^2 = \rho^2 + (\dot{\rho}\sigma)^2$, $\rho = \frac{1}{k}$, $\sigma = \frac{1}{\tau}$ and dot (·) denotes the differentiation. 5+5

(b) Obtain a necessary and sufficient condition for a space curve to be a helix. 5+5

- (c) State and prove Euler's theorem on a surface.
- (d) Deduce the Gaussian curvature of the helicoid $\sigma(u, v) = (v \cos u, v \sin u, \lambda u)$ and catenoid $\sigma(u, v) = (\cos hu \cos v, \cos hu \sin v, u)$. 5+5